consulting

98-ev.jpg
雲霧飄裊,無所不在的智慧:物聯網、霧運算到雲端大數據
會員評比: / 3
最差最好 
知識庫文章 - 網際網路知識文章

2014年,台積電董事長張忠謀在股東會上表示:「物聯網是下一個大事!」物聯網頓時成為熱門產業,但到底什麼是物聯網?它跟大數據有何關係?

施吉昇巧喻:「物聯網有三個主要的元件,剛好就是物、聯、網。」物是感測器或制動器。感測器的角色是蒐集資料,例如:溫度計、雷達測速器;制動器則是能改變系統狀態的電子裝置,例如冷氣控制器。

聯是資訊傳遞的網路,感測器可透過它把資料傳到他處,制動器也能透過它接收到不同的指令。網則是決策邏輯的網路,透過從網路蒐集而來的感測資料進行決策判斷,再把判斷之後產生的指令送到制動器,這樣才會產生物聯網。網裡面會有各種領域的專業智慧,是物聯網的核心。

物聯網能應用在哪些地方?較為人知的例子有智慧電網、智慧手錶、智慧家電等,但這些並非真正的物聯網。

物聯網的發展分成三個階段,施吉昇進一步說明:第一階段是「聯網物」:東西能連上網,但只聯到服務商,物物不相連,例如智慧手錶。第二階段是「聯物網」:物能相聯成網,但網網不相連。例如:Apple watch能連到iPhone,但連不到Android手機。真正的「物聯網」必須物物相聯成網,而且合作無間。

物聯網跟你我的關係

物聯網要實際應用,可先在城市裡佈滿感測器和制動器,蒐集資料之後,送到雲端做大數據的分析,之後產生決策和命令,再把這些結果傳回到物件上。

以空氣品質為例,台灣目前有76個政府測站,約2000個的民間測站。環保單位的儀器需要高精準度、但費用也高,而且佈點較少。民眾安裝的「空氣盒子」數量多,可以構成一個空氣品質的資訊網路,不但能提供即時的空氣品質,還能透露污染源來自何處。

不過使用這類物聯網有一大挑戰。一般民眾使用的感測器價格低廉,但錯誤率也很高。施吉昇指出,在做大數據分析時,必須剔除異常資料,這時就需要周邊資訊、在地智慧,這也是霧運算發揮專長的地方。

霧運算是指,透過感測器蒐集到的資料,先送到周邊的計算裝置(如手機、無線基地台)做先期處理,再把處理過的資料送往雲端,在雲端上建立完整的知識模型。

在物聯網裡面,雲(計算)、霧(計算),以及物,三者息息相關。物是指感測器,負責「察言觀色」,蒐集資料後送往霧運算,霧運算做過本地分析之後,再把資料送往雲端做「趨勢分析」。雲端建立知識模型之後,為了「洞燭先機」,會把模型往傳送到霧運算平台,霧運算平台就能利用模型的少量資訊「見微知著」。

霧運算的應用之一是火警逃生系統。一般建築的逃生指示都是固定方向,無法即時反應火場狀況。國內廠商研發的動態逃生指引系統結合了感測器和在地運算,能即時提供疏散導引。

物聯網也必須能自我修復、自我組織,跟周邊裝置互相合作,這才是有智慧的物聯網。施吉昇研究室研發的逃生指示器,就能相互溝通,即時而動態地顯示正確逃生方向。

未來的挑戰

在未來的更多應用上,我們也面臨許多挑戰。首先,如何即時處理具有更多資訊的資料?(例如:如何判斷闖紅燈者是酒駕或是要趕赴醫院)。第二,如何在資料隱私和公眾利益之間取得平衡?(例如:誰擁有監視器的資料?)第三,如何確認機器間的指令不會被竄改?(例如:歹徒若偷放指令到火災系統,可能讓你家門戶大開。)

但物聯網、霧運算到雲端大數據的應用趨勢,能提供的是察言觀色、趨勢分析、洞燭先機、見微知著等許多優點,這樣我們就能利用無所不在的智慧,擁有更好的生活品質,而實現這個美好願景,還需要我們一起努力。

(此篇文章來源: 施吉昇 | 台灣大學資訊工程系教授 | 演講 ,【整理|科學人】)